MRQ1 – Field failure relay

Manual MRQ1 (Revision A)
Contents

1. **Introduction and application** ... 4
2. **Features and characteristics** ... 5
3. **Design** ... 6
 3.1 Connections ... 6
 3.1.1 Analog input circuits ... 6
 3.1.2 Blocking input .. 6
 3.1.3 External reset .. 7
 3.1.4 Output relays ... 7
 3.2 Display .. 8
 3.3 LEDs .. 9
4. **Working principle** .. 10
 4.1 Analog circuit .. 10
 4.2 Digital circuit .. 10
 4.3 Underimpedance measurement .. 10
 4.4 Under voltage measurement .. 11
5. **Operation and setting** .. 12
 5.1 Adjustable parameter ... 12
 5.2 Setting procedure ... 12
 5.2.1 Set point for the under voltage element (U<) 12
 5.2.2 Trip delay time delay for the under voltage element (tU<) 12
 5.2.3 Impedance characteristic 1(Z1A/Z1B) .. 12
 5.2.4 Trip delay for impedance characteristic 1 (tZ1) 13
 5.2.5 Impedance characteristic (Z2A/Z2B) .. 13
 5.2.6 Trip delay for impedance characteristic 2 (tZ2) 13
 5.2.7 Slave address for remote control ... 13
 5.3 Determination of the setting value ... 14
 5.3.1 Under impedance protection ... 14
 5.3.2 Under voltage protection ... 16
 5.3.3 Setting example ... 16
 5.4 Indication and measuring values ... 18
 5.5 Reset .. 18
6. **Relay Testing and commissioning** ... 19
 6.1 Power-On ... 19
 6.2 Testing the output relays .. 19
 6.3 Checking the set values ... 19
 6.4 Secondary injection test .. 20
 6.4.1 Test equipment .. 20
 6.4.2 Example of test circuit for MRQ1 relay .. 20
 6.4.3 Checking the input circuits and measured values 21
 6.4.4 Checking the operating and resetting values of the under voltage functions ... 22
 6.4.5 Checking the relay operating time of the under voltage function 22
 6.4.6 Checking the under impedance characteristics 22
 6.5 Checking the extern blocking and reset functions 23
 6.6 Primary injection test ... 23
 6.7 Maintenance ... 24
7. **Technical data** ... 25
 7.1 Measuring inputs .. 25
 7.2 Common data ... 25
 7.3 Setting ranges and steps .. 26
 7.4 Common data for all MR relays .. 26
8. **Order form** .. 27

Important:
For additional common data of all MR relays please refer to manual “MR-digital Multifunctional Relays”.

- DOK-TD-MRQ1 Rev.A
1. Introduction and application

The field failure relay MRQ1 protects synchronous generators against operation outside the stable operation area due to loss of excitation. When partial or complete loss of excitation occurs on a synchronous machine, reactive power flows from the system into the machine and the apparent impedance as viewed from the machine terminals goes into the negative X region in the R-X diagram.

The MRQ1 detects the low or under impedance condition and trips the generator circuit breaker, thus preventing damage due to out of step operation and system instability.

The under impedance measurement provides two elements with separate impedance and time settings. Therefore setting according to the dynamic and steady state stability curve is possible.

MRQ1 calculates the momentary impedance value from the generator current and voltage and compares this value with the two settings of the under impedance elements.

Under impedance circle no. 1 reproduces the steady state stability area of the generator. Element no. 1 may be used for alarm purposes and corrective measures like boost excitation.

Element no. 2 reproduces the dynamic stability area of the generator. The time delay is set to a lower value. It provides fast clearing on complete loss of field and backs up element no. 1. Element no. 2 should trip the generator circuit breaker quickly.

The following factors determine the setting of the two elements: Stability diagram of the generator, excitation system of the generator and the system configuration.
2. Features and characteristics

- Digital protection relay with powerful microcontroller
- Three phase voltage supervision in delta-connection
- Current measurement in phase L1
- Alphanumeric display for easy setting of the protection relay, reading of measured and calculated values and read out of the fault memory
- Digital filtering of the measured values by use of discrete Fourier analysis to suppress higher harmonics and d.c. components induced by faults or system operations
- Optimum adaptation to the stability characteristic of synchronous machines by two under impedance elements with separate set points and time delays
- Indication of the impedance measurement: absolute, real and imaginary value
- Under voltage blocking (<10% Un) of the under impedance elements to prevent maloperation due to missing measuring voltage, e.g. fuse failure or nearby short circuit of the generator
- Self adjusting sample frequency for precise operation between 40 Hz and 70 Hz
- External blocking and reset inputs
- Communication via serial interface RS485
- Five output relays:
 - Trip relay: Under impedance elements 1 and 2
 - Alarm relay: Under impedance element 1
 - Alarm relay: Under impedance element 2
 - Trip relay: under voltage
 - Self supervision
3. Design

3.1 Connections

* Hint:
The current transformer in phase 1 can also be connected to the outgoing line of the generator.

3.1.1 Analog input circuits

The MRQ1 receives the analog input signal of phase current L1 (B3-B4) and the line to line voltages U12 (A3/A4), U23 (A5/A6), U31 (A7/A8). The under voltage element measures all three line-to-line voltages, whereas the under impedance elements use voltage U23 and phase current L1 for the impedance calculation.

3.1.2 Blocking input

Connection of the auxiliary voltage to the blocking input D8/E8 inhibits all protective functions of the MRQ1. This may be used during start up of the generator.
3.1.3 External reset

Please refer to 5.5

3.1.4 Output relays

The MRQ1 has five output relays with following assigned functions:

- Trip relay: under impedance elements 1 and 2 (two change over contacts: C1, D1, E1; C2, D2, E2)
- Alarm relay: under impedance element 1 (one change over contact, C4, D4, E4)
- Alarm relay: under impedance element 2 (one change over contact, C5, D5, E5)
- Trip relay: under voltage U< (one change over contact, C6, D6, E6)
- Self-supervision alarm relay (one change over contact, C7, D7, E7)

All trip and alarm relays are working current relays, the relay for self supervision is an idle current relay.

The LED marked with letters RS lights up during setting of the slave address of the device for serial data communication.
3.2 Display

<table>
<thead>
<tr>
<th>Function</th>
<th>Display shows</th>
<th>Pressed pushbutton</th>
<th>Corresponding LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal operation</td>
<td>WW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured operating values line-to-line voltage phase current impedance</td>
<td>Actual measured voltage U_{12}, U_{23}, U_{31} current I_1 impedance Z, R, X</td>
<td>$<$SELECT/$RESET> one time for each value</td>
<td>U_1, U_2, U_3, I_1, Z, R, X</td>
</tr>
<tr>
<td>Setting values: undervoltage trip delay undervoltage</td>
<td>setting value in volt setting value in seconds</td>
<td>$<$SELECT/$RESET> $ <<- <<- U<$</td>
<td>$t_{U<}$</td>
</tr>
<tr>
<td>Impedance setting Z1A Impedance setting Z1B trip delay impedance Z1</td>
<td>setting value in % setting value in seconds</td>
<td>$<$SELECT/$RESET> $ <<- <<- Z1A</td>
<td>t_{Z1}</td>
</tr>
<tr>
<td>Impedance setting Z2A Impedance setting Z2B trip delay impedance Z2</td>
<td>setting value in % setting value in seconds</td>
<td>$<$SELECT/$RESET> $ <<- <<- Z2A</td>
<td>t_{Z2}</td>
</tr>
<tr>
<td>Function blockade</td>
<td>EXIT $ <<- <<- until max. setting value</td>
<td>LED of blocked parameter</td>
<td></td>
</tr>
<tr>
<td>Slave address of serial interface</td>
<td>1-32</td>
<td>$<$SELECT/$RESET> $ <<- <<- RS</td>
<td></td>
</tr>
<tr>
<td>Recorded fault data line-to-line voltages, current, impedance measuring range overflow</td>
<td>Measured values in the instant of tripping max</td>
<td>$<$SELECT/$RESET> one time for each value</td>
<td>U_1, U_2, U_3, I_1, Z, R, X</td>
</tr>
<tr>
<td>blocked impedance measurement</td>
<td>?</td>
<td>$<$SELECT/$RESET> one time for each value</td>
<td>Z, R, X</td>
</tr>
<tr>
<td>Save parameter?</td>
<td>SAV?</td>
<td>$<$ENTER></td>
<td></td>
</tr>
<tr>
<td>Save parameters!</td>
<td>SAV!</td>
<td>$<$ENTER> for about 3 s</td>
<td></td>
</tr>
<tr>
<td>Software version</td>
<td>First part (e.g. D16-) Sec. part (e.g. 5.01)</td>
<td>$<$TRIP> one time for each part</td>
<td></td>
</tr>
<tr>
<td>Manual trip</td>
<td>TRI?</td>
<td>$<$TRIP> three times</td>
<td></td>
</tr>
<tr>
<td>Inquire password</td>
<td>PSW?</td>
<td>$<$SELECT/$RESET> $ <<- <<- / $ <<- <<- $<ENTER></td>
<td></td>
</tr>
<tr>
<td>Relay tripped</td>
<td>TRIP</td>
<td>$<$TRIP> or after fault tripping</td>
<td>U_1, U_2, U_3, Z, $U<$, $Z1A$, $Z1B$, $Z2A$, $Z2B$</td>
</tr>
<tr>
<td>Secret password input</td>
<td>XXXX</td>
<td>$<$SELECT/$RESET> $ <<- <<- / $ <<- <<- $<ENTER></td>
<td></td>
</tr>
<tr>
<td>System reset</td>
<td>WW</td>
<td>$<$SELECT/$RESET> for about 3 s</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1: Possible indication messages on the display
3.3 LEDs

<table>
<thead>
<tr>
<th>LED-designation</th>
<th>Colour</th>
<th>Mode</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>U₁, U₂, U₃</td>
<td>green</td>
<td>steady</td>
<td>Display of the actual voltage measuring values</td>
</tr>
<tr>
<td>U₁, U₂, U₃</td>
<td>red</td>
<td>steady</td>
<td>U< tripped</td>
</tr>
<tr>
<td>U₁, U₂, U₃</td>
<td>red</td>
<td>flashing</td>
<td>U< picked up</td>
</tr>
<tr>
<td>I₁</td>
<td>green</td>
<td>steady</td>
<td>Display of the actual current measuring value</td>
</tr>
<tr>
<td>Z</td>
<td>green</td>
<td>steady</td>
<td>Display of the actual impedance measuring absolute value</td>
</tr>
<tr>
<td>Z</td>
<td>red</td>
<td>steady</td>
<td>Z< tripped</td>
</tr>
<tr>
<td>Z</td>
<td>red</td>
<td>flashing</td>
<td>Z< picked up</td>
</tr>
<tr>
<td>R, X</td>
<td>yellow</td>
<td>steady</td>
<td>Display of the actual impedance measuring real and imaginary value</td>
</tr>
<tr>
<td>RS</td>
<td>yellow</td>
<td>steady</td>
<td>Slave-address setting</td>
</tr>
<tr>
<td>U<</td>
<td>green</td>
<td>steady</td>
<td>U<-setting</td>
</tr>
<tr>
<td>U<</td>
<td>red</td>
<td>steady</td>
<td>U< tripped</td>
</tr>
<tr>
<td>U<</td>
<td>red</td>
<td>flashing</td>
<td>U< picked up</td>
</tr>
<tr>
<td>tU<</td>
<td>green</td>
<td>steady</td>
<td>tU<-setting</td>
</tr>
<tr>
<td>Z₁A, Z₁B</td>
<td>green</td>
<td>steady</td>
<td>Z₁<-setting</td>
</tr>
<tr>
<td>Z₁A, Z₁B</td>
<td>red</td>
<td>steady</td>
<td>Z₁< tripped</td>
</tr>
<tr>
<td>Z₁A, Z₁B</td>
<td>red</td>
<td>flashing</td>
<td>Z₁< picked up</td>
</tr>
<tr>
<td>tZ₁</td>
<td>green</td>
<td>steady</td>
<td>tZ₁-setting</td>
</tr>
<tr>
<td>Z₂A, Z₂B</td>
<td>green</td>
<td>steady</td>
<td>Z₂<-setting</td>
</tr>
<tr>
<td>Z₂A, Z₂B</td>
<td>red</td>
<td>steady</td>
<td>Z₂< tripped</td>
</tr>
<tr>
<td>Z₂A, Z₂B</td>
<td>red</td>
<td>flashing</td>
<td>Z₂< picked up</td>
</tr>
<tr>
<td>tZ₂</td>
<td>green</td>
<td>steady</td>
<td>tZ₂-setting</td>
</tr>
</tbody>
</table>

Table 3.2: Possible LED indications
4. Working principle

4.1 Analog circuit

The secondary current and voltage from the main current and voltage transformers are converted into proportional voltage signals via the input transformers. High frequency disturbances are suppressed by analog RC-filters.

The analog voltage signals are fed via sample and hold circuits to the A/D-converter of the microprocessor and transformed to digital signals. The analog signals are sampled with a self-adjusting sample rate of 16 times of the system frequency. The precision of the impedance measurement is, therefore, independent of variations of the system frequency in a range of 40 Hz to 70 Hz.

4.2 Digital circuit

The essential part of the MRQ1 is a powerful microcontroller. All of the operations, from the analog to digital conversion up to the relay’s trip decision, are carried out by the microcontroller digitally. The relay program is located in an EPROM (Read-only-memory). With this program the microcontroller processes the analog signals and calculates the fundamental wave form of voltages and current. The algorithm uses the „Fourier-notch“ filter, excluding all frequencies except the fundamental.

4.3 Underimpedance measurement

The underimpedance elements evaluate the phase current L1 and the line to line voltage U23. The DFFT algorithm calculates the real- and imaginary values of voltage and current:

- \(\text{Re}[\cdot] \): real part
- \(\text{Im}[\cdot] \): imaginary part

\[
U_{23} = \text{Re}[U_{23}] + j \text{Im}[U_{23}]
\]

\[
I_1 = \text{Re}[I_1] + j \text{Im}[I_1]
\]

The real and imaginary values of impedance are calculated as follows:

\[
R^* = \frac{\text{Re}[U_{23}] + \text{Re}[L] + j \text{Im}[U_{23}] \cdot \text{Im}[L]}{[\text{Re}[L]^2 + [\text{Im}[L]]^2]}
\]

\[
X^* = \frac{j \text{Im}[U_{23}] \cdot \text{Re}[L] + j \text{Im}[U_{23}] \cdot j \text{Im}[L]}{[\text{Re}[L]^2 + [\text{Im}[L]]^2]}
\]

After an angle correction follows the actual impedance phasor:

\[
\bar{Z} = R + jX = Z^* \cdot e^{j\frac{\pi}{2}} = i (R^* + jX^*)
\]

whereby:

\[
R = -X^*
\]

\[
X = +R^*
\]
The tripping zones of the under-impedance elements form impedance circles with their centres on the X-axis. By adjustment of two parameters per circle the tripping zones are determined:

- **Z1A/Z2A**: Distance between the up-per intersection points of the circle periphery with the X-axis and the R-axis (Offset). Z1A and Z2A can be set in the range from -300 % to +300 %, which define the location of the circles on the X-axis. If Z1A or Z2A is set to be positive, the corresponding tripping zone stretches into the positive X-region. If Z1A or Z2A is set to be negative corresponding tripping zone is located only in the negative x-region.
- **Z1B/Z2B**: Diameters of the impedance circles, which define the size of the circles.

The tripping zones are the areas inside the periphery of the circles. With separate adjustment of two tripping zones the optimum adaptation to the generator dynamic and steady state stability characteristics can be achieved.

![Figure 4.1: Tripping zones of the underimpedance elements](image)

In case of missing measuring voltage, e.g. due to voltage transformer fuse failure or a near by short circuit of the generator, the detection of loss of excitation is not possible. This condition could lead to maloperation in case the trip zone includes the origin of the R-X-axis. That’s why the MRQ1 automatically blocks the impedance calculation if the measuring voltage of U23 falls below 10% of Un.

4.4 Under voltage measurement

The MRQ1 provides a three phase under voltage protection element. A collapse of the system voltage below a critical value, typically < 80 % Un, caused by a loss of excitation of the generator jeopardizes the system stability seriously. Therefore the under voltage element should trip the generator circuit breaker instantaneously (t < 0,25 s). The under voltage element of MRQ1 activates a separate output relay. The voltage setting ranges from 2 % Un to 110 % Un. The tripping time range covers 0,04 s to 50 s.
5. Operation and setting

5.1 Adjustable parameter

The user has access to the parameters listed below:

- **U<** - Set point of the under voltage element
- **tU<** - Trip delay of the under voltage element
- **Z1A** - Offset value of impedance circle no. 1
- **Z1B** - Diameter of impedance circle no. 1
- **tZ1** - Trip delay of impedance element no. 1
- **Z2A** - Offset value of impedance circle no. 2
- **Z2B** - Diameter of impedance circle no. 2
- **tZ2** - Trip delay time of impedance element no. 2
- **RS** - Slave address for remote control

5.2 Setting procedure

For parameter setting a password has to be entered first. (Please refer to 4.4 of description „MR - Digital multifunctional relays“).

5.2.1 Set point for the under voltage element (U<)

During setting of the under voltage set point U< the display shows the actual setting in Volts. The set point may be altered by use of the buttons <+> and <-> and stored with <ENTER>. The under voltage element is blocked, if the parameter is set to „EXIT“.

5.2.2 Trip delay time delay for the under voltage element (tU<)

During setting of the under voltage trip delay tU< the display shows the actual setting in seconds. The trip delay may be altered by use of the buttons <+> and <-> and stored with <ENTER>. If this parameter is set to „EXIT“, the under voltage output relay is blocked (infinite tripping time). The measurement and display for the under voltage element is still active.

5.2.3 Impedance characteristic 1(Z1A/Z1B)

The two impedance tripping zones of the MRQ1 form circles in the R-X diagram. The centre of the circles is located along the X-axis. Circle no. 1 is described by two parameters: Z1A, the distance of the circle from the R-axis and Z1B, the diameter of the circle (ref. 4.3).

The two parameters Z1A and Z1B are expressed as per cent value of the calculated "nominal impedance" ZN of the individual MRQ1-relay. ZN is defined as follow:

\[
Z_N = \frac{U_{N,MRQ}}{\sqrt{3}} \cdot I_{N,MRQ}
\]

During setting of the offset value Z1A the display shows the percent value. This value may be altered by use of the buttons <+> and <-> in the range from -300 % to + 300 % and stored with <ENTER>. With negative values the circle lies completely in the negative X region. Positive values shift the circle into the positive X-region. Zero means that the periphery of the circle touches the R-axis with the circle in the negative region. The diameter of the circle Z1B may be set in the range from 0 % to 600 %. If Z1B is set to zero, this impedance element is blocked.
5.2.4 Trip delay for impedance characteristic 1 (tZ1)

During setting of tripping time tZ1 for impedance element no.1 the display shows the actual setting in seconds. The tripping time may be altered by use of the buttons <+> and <-> and stored with <ENTER>.

5.2.5 Impedance characteristic (2Z2A/Z2B)

The setting of Z2A and Z2B is similar to the setting of Z1A and Z1B. Please refer to 5.2.3.

5.2.6 Trip delay for impedance characteristic 2 (tZ2)

During setting of tripping time tZ2 for impedance element no. 2 the display shows the actual setting in seconds. The tripping time may be altered by use of the buttons <+> and <-> and stored with <ENTER>.

5.2.7 Slave address for remote control

The slave address may be altered by use of the buttons <+> and <-> and stored with <ENTER>.
5.3 Determination of the setting value

5.3.1 Under impedance protection

Calculation of the setting values for the impedance tripping zones:

The settings of the impedance tripping zones have to be determined by the generator reactances \(Z_d\) and \(Z_d\), the transformer reactance \(Z_T\) and the grid impedance \(Z_N\).

Knowing the above listed parameters, the secondary percentage setting values may be calculated from:

\[
x_{sec}(\%) = x_{prim}(p.u.) \cdot \frac{I_{N,MRQ} \cdot I_{N,CT,prim} \cdot U_{N,VT,sec} \cdot U_{N,Gen}}{I_{N,CT,sec} \cdot I_{N,Gen} \cdot U_{N,MRQ} \cdot U_{N,Gen}} \cdot 100(\%)
\]

Definitions:

- \(x_{sec}(\%)\) - calculated secondary impedance setting of MRQ1 (Z1A, Z1B, Z2A or Z2B) in percentage
- \(x_{prim}(p.u.)\) - primary reactance of generator (\(Z_d\) and \(Z_d\)), transformer (\(Z_T\)) and grid (\(Z_N\)) in per unit
- \(U_{N,Gen}\) - Generator nominal voltage in V
- \(I_{N,Gen}\) - Generator nominal current in A
- \(U_{N,VT,prim}\) - Primary nominal voltage of the voltage transformer in V
- \(U_{N,VT,sec}\) - Secondary nominal voltage of the voltage transformer in V
- \(I_{N,CT,prim}\) - Primary nominal current of the current transformer in A
- \(I_{N,CT,sec}\) - Secondary nominal current of the current transformer in A
- \(I_{N,MRQ}\) - Nominal voltage of the MRQ1 in V (100V / 230V / 400V)
- \(I_{N,MRQ}\) - Rated current of the MRQ1 in A (1A/5A)

or:

\[
x_{sec}(\%) = x_{prim}(p.u.) \cdot \frac{K_I \cdot U_{N,Gen} \cdot I_{N,MRQ}}{K_U \cdot I_{N,Gen} \cdot U_{N,MRQ}}
\]

With the current and voltage transfer ratios:

- \(K_I\): for current
- \(K_U\): for voltage

\[
K_I = \frac{I_{N,CT,prim}}{I_{N,CT,sec}} \quad K_U = \frac{U_{N,VT,prim}}{U_{N,VT,sec}}
\]

Tripping time settings for the under-impedance elements:

The underimpedance protection element no.1 is usually adapted to the steady state stability characteristic of the generator. Generally, it takes at least 2 to 6 seconds to lose synchronism in case of partial loss of excitation. Hence the tripping time may be set from 0,5 s to 3 s.

The second underimpedance element provides fast clearing on loss of field and is adapted to the dynamic stability characteristic of the generator. This element should be used instantaneously or with short delay of 0,25 s to 0,5 s.
The diagrams below show examples for the relay setting:

Figure 5.1: Setting adapted to the steady state and dynamic stability characteristic

Figure 5.2: Selective protection with any generator load
5.3.2 Under voltage protection

The under voltage protection element is usually set to the critical system voltage value at which the generator with loss of field jeopardizes the system stability. The limit is normally about 80 % of the nominal generator voltage. The secondary set value is calculated as follows:

\[
U = 0.8 \cdot \frac{U_{N,Gen}}{K_U}
\]

The under voltage trip delay should be set at 0.25 s to max. 1 s.

5.3.3 Setting example

The example below explains the set-ting procedure for a synchronous generator of 200 MW:

Generator parameters:

- \(P_{Gen} = 200\,\text{MW}\)
- \(\text{COS}_\Phi = 0.85\)
- \(U_{N,Gen} = 15.75\,\text{kV}\)
- \(I_{N,Gen} = 8625\,\text{A}\)
- \(x_d = 1.9808\)
- \(x'_d = 0.2428\)
- \(x_N = 0.2\)
- \(K_U = 15750\,\text{V}/100\,\text{V}\)
- \(K_i = 12000\,\text{A}/5\,\text{A}\)
- \(U_{N,MQR} = 100\,\text{V}\)
- \(I_{N,MQR} = 5\,\text{A}\)

Setting of the impedance element no. 1 (steady state stability characteristic):

\[
Z_{1A}(\%) = x_N \cdot \frac{K_i \cdot U_{N,Gen} \cdot I_{N,MQR}}{K_U \cdot I_{N,Gen} \cdot U_{N,MQR}} \cdot 100\%
\]

\[
Z_{1A} = 0.2 \cdot \frac{2400 \cdot 15750 \cdot 5}{157.5 \cdot 8625 \cdot 100} \cdot 100\% = 27.8\%
\]

\[Z_{1A} \approx 28\%
\]

\[
Z_{1B}(\%) = x_d \cdot \frac{K_i \cdot U_{N,Gen} \cdot I_{N,MQR}}{K_U \cdot I_{N,Gen} \cdot U_{N,MQR}} \cdot 100\% + Z_{1A}
\]

\[
Z_{1B} = 1.9808 \cdot \frac{2400 \cdot 15750 \cdot 5}{157.5 \cdot 8625 \cdot 100} \cdot 100\% + 28\% = 303.6\% \approx 304\%
\]

\[
Z_{1B} = 303.6\% \approx 304\%
\]
Setting of the impedance element no. 2 (dynamic stability characteristic):

\[Z_{2A}(\%) = -\frac{1}{2} x_d' \frac{K_f \cdot U_{N,Gen} \cdot I_{N,MRQ}}{K_u \cdot I_{N,Gen} \cdot U_{N,Gen}} \cdot 100(\%) \]

\[Z_{2A} = -\frac{1}{2} \frac{0.2428 \cdot 2400 \cdot 15750 \cdot 5}{157.5 \cdot 8625 \cdot 100} \cdot 100\% \]

\[Z_{2A} = -16.9\% \approx -17\% \]

\[Z_{2B}(\%) = x_d \frac{K_f \cdot U_{N,Gen} \cdot I_{N,MRQ}}{K_u \cdot I_{N,Gen} \cdot U_{N,MRQ}} \cdot 100(\%) + Z_{2A} \]

\[Z_{2B} = 1.9808 \frac{2400 \cdot 15750 \cdot 5}{157.5 \cdot 8625 \cdot 100} \cdot 100(\%) - 17\% \]

\[Z_{2B} = 258.6\% \approx 259\% \]

Setting of the trip delay for the impedance elements:

\[t_{Z1} = 1.0 \text{ s} \]
\[t_{Z2} = 0.25 \text{ s} \]

Setting of the under voltage element:

\[U = 0.8 \cdot \frac{U_{N,Gen}}{K_u} = 0.8 \cdot \frac{15750}{157.5} = 80\text{V} \]

Setting of the trip delay for the under voltage element:

\[t_{U<} = 0.25 \text{ s} \]
5.4 Indication and measuring values

The tables below list the display informations.
Please read the abbreviations as:
c: continuous
f: flashing
g: green
r: red
y: yellow

If one of the protection elements of the MRQ1 picked up but did not trip, the related LED will flash slowly until the <SELECT/RESET> button is pressed for 3 s. After a trip, all measured values at the instant of tripping may be re-called by pressing the <SELECT/RESET> push button. Reset is possible by pressing the <SELECT/RESET> button for 3 s.

<table>
<thead>
<tr>
<th>Display</th>
<th>Unit</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured voltage value U12</td>
<td>in V</td>
<td>U1 + U2 (c, g)</td>
</tr>
<tr>
<td>Measured voltage value U23</td>
<td>in V</td>
<td>U2 + U3 (c, g)</td>
</tr>
<tr>
<td>Measured voltage value U31</td>
<td>in V</td>
<td>U3 + U1 (c, g)</td>
</tr>
<tr>
<td>Measured current value I1</td>
<td>in I/ln</td>
<td>I1 (c, g)</td>
</tr>
<tr>
<td>Measured impedance value</td>
<td>in %.</td>
<td>Z (c, g)</td>
</tr>
<tr>
<td>Measured impedance real value</td>
<td>in %.</td>
<td>R (c, y)</td>
</tr>
<tr>
<td>Measured impedance imaginary value</td>
<td>in %</td>
<td>X (c, y)</td>
</tr>
<tr>
<td>Remote control RS485</td>
<td></td>
<td>RS (c, y)</td>
</tr>
</tbody>
</table>

Pickup and trip alarms:

<table>
<thead>
<tr>
<th>Cause</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup of impedance element Z1</td>
<td>Z (f, r) + Z1A (f, r) + Z1B (f, r)</td>
</tr>
<tr>
<td>Tripping of impedance element Z1</td>
<td>Z (c, r) + Z1A (c, r) + Z1B (c, r)</td>
</tr>
<tr>
<td>Pickup of impedance element Z2</td>
<td>Z (f, r) + Z2A (f, r) + Z2B (f, r)</td>
</tr>
<tr>
<td>Tripping of impedance element Z2</td>
<td>Z (c, r) + Z2A (c, r) + Z2B (c, r)</td>
</tr>
<tr>
<td>Pickup of undervoltage element Ux</td>
<td>Ux (f, r) + U< (f, r) (x: 12, 23, 31)</td>
</tr>
<tr>
<td>Tripping of undervoltage element Ux</td>
<td>Ux (c, r) + U< (c, r) (x: 12, 23, 31)</td>
</tr>
</tbody>
</table>

5.5 Reset

Unit MRQ1 has the following three possibilities to reset the display of the unit as well as the output relay at jumper position J3 = ON.

Manual Reset
- Pressing the push button <SELECT/RESET> for some time (about 3 s)

External Reset
- Through applying auxiliary voltage to C8/D8

Software Reset
- The software reset has the same effect as the <SELECT/RESET> push button (see also communication protocol of RS485 interface).

The display can only be reset when the pickup is not present anymore (otherwise "TRIP" remains in display). During resetting of the display the parameters are not affected.
6. Relay Testing and commissioning

The test instructions following below help to verify the protection relay performance before or during commissioning of the protection system. To avoid a relay damage and to ensure a correct relay operation, be sure that:

the auxiliary power supply rating corresponds to the auxiliary voltage on site.
- the rated current and rated voltage of the relay correspond to the plant data on site.
- the current transformer circuits and voltage transformer circuits are connected to the relay correctly.

all signal circuits and output relay circuits are connected correctly.

6.1 Power-On

NOTE!
Prior to switch on the auxiliary power supply, be sure that the auxiliary supply voltage corresponds with the rated data on the type plate.
Switch on the auxiliary power supply to the relay and check that the message "WW" appears on the display and the self supervision alarm relay (watchdog) is energized (Contact terminals D7 and E7 closed).

6.2 Testing the output relays

NOTE!
Prior to commencing this test, always block the output circuits or interrupt in another way the output circuits which can cause the tripping of the circuit breaker if the breaker operation during this test is not de-sired.

By pressing the push button <TRIP> once the display shows you the first part of the software version of the relay (e.g. „D08-“). By pressing the push button <TRIP> twice the display shows the second part of the software version of the relay (e.g. „4.01“). The software version should be quoted in all correspondence. After you have got a message "PSW?" on the display by pressing the push button <TRIP> once more please enter the correct password to proceed with the test. After that the message "TRI?" will follow. Confirm this testing by means of pressing push button <TRIP> again.

All output relays should then be activated and the self supervision alarm relay (watchdog) should be de-activated one after another with a time interval of 1 second. Thereafter, reset all output relays back to their normal positions by pressing the push button <SELECT/RESET>.

6.3 Checking the set values

By repeatedly pressing the push button <SELECT> all relay set values may be checked and set value modification can be done with the push button <+><-> and <ENTER>. For detailed information about that, please refer to chapter 5.
6.4 Secondary injection test

6.4.1 Test equipment

- Voltmeter, ammeter with class 1 or better
- Phase angle meter
- Auxiliary power supply with the voltage corresponding to the rated data on the type plate
- Single-phase current supply unit (adjustable from 0 to 10xIn)
- Single-phase or three-phase voltage supply unit with phase shifting (adjustable from 0 to 1.2xUn)
- Timer to measure the operating time (Accuracy class ≤ ±10ms)
- Switching device
- Test leads and tools

6.4.2 Example of test circuit for MRQ1 relay

For testing field failure relays, you need both current and voltage input signals with adjustable phase shifting. Figure 6.1 shows an example of a test circuit with adjustable three-phase voltage source and a single-phase current source energizing the MRQ1 relay under test. If you only have a single-phase voltage source, you can also test the under impedance function of the MRQ1 by connecting the single phase voltage to the relay terminals A5/A6.

For testing the field failure relay, the input voltages shall be applied to the relay with a constant value within its effective range (e.g. U=50V). The input current and phase angle shall be appropriately varied.

![Figure 6.1: Test Circuit](image)

Great care must be taken to connect the test current and test voltage to the relay in correct polarity. In Fig. 6.1 the relay and test source polarity are indicated by a * mark near the terminals.
6.4.3 Checking the input circuits and measured values

The following quantities can be measured by MRQ1 and indicated on the display:

- Three phase-to-phase voltages U12, U23, U31 in volt
- Current IL1 related to the nominal current (x I_N)
- Impedance value Z related to the nominal impedance value (in %)
- Real part of the impedance value R related to the nominal impedance value (in %)
- Imaginary part of the impedance value X related to the nominal impedance value (in %)

The nominal impedance value is defined as follows:

\[
x_n = \frac{U_{N,MRQ1}}{\sqrt{3} \cdot I_{N,MRQ1}}
\]

Inject a current of rated value (1A for I_N = 1A) in phase 1 (terminals B3-B4) and apply three phase-to-phase voltages in rated value (e.g. U_N=100V) to terminals A3/A4, A5/A6, A7/A8 in Δ-connection. Check the measured voltages, current and impedance on the display by pressing the push button <SELECT> repeatedly. The voltages and current to be measured in this case should have rated value (100V for U_N=100V and 1x I_N for I_N=1A). Check that the measured impedance value Z on display is 100%. The real and imaginary parts of the impedance value depend on the phase angle between the current IL1 and voltage U23, because the under impedance elements evaluate these two input quantities. Change the phase angle between the current IL1 and voltage U23. Observe the measured impedance value and its real and imaginary parts on the display.

Compare them with the reference values given in the following table:

<table>
<thead>
<tr>
<th>Phase angle</th>
<th>Measured impedance on display</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Z(%)</td>
</tr>
<tr>
<td>IL1 in phase with U23</td>
<td>100</td>
</tr>
<tr>
<td>IL1 leads U23 by 45°</td>
<td>100</td>
</tr>
<tr>
<td>IL1 leads U23 by 90°</td>
<td>100</td>
</tr>
<tr>
<td>IL1 leads U23 by 135°</td>
<td>100</td>
</tr>
<tr>
<td>IL1 leads U23 by 180°</td>
<td>100</td>
</tr>
<tr>
<td>IL1 lags U23 by 45°</td>
<td>100</td>
</tr>
<tr>
<td>IL1 lags U23 by 90°</td>
<td>100</td>
</tr>
<tr>
<td>IL1 lags U23 by 135°</td>
<td>100</td>
</tr>
</tbody>
</table>

Compare the readings of current, voltage at indicated display of relay with the readings from the ammeter, voltmeter. The deviations of voltage and current measurement must not exceed 1% and 3% respectively. By using an RMS-metering instrument, a greater deviation may be observed if the test current and test voltage contain harmonics. Because the MRQ1 relay measures only the fundamental component of the input signals, the harmonics will be rejected by the internal DFFT-digital filter. Whereas the RMS-metering instrument measures the RMS-value of the input signals. Calculate the impedance and its real and imaginary parts according to the voltage and current measurement. Compare the calculated value with the measured value on MRQ1 display. The deviation of the impedance absolute value must not exceed 5%. The deviation of the impedance angle must not exceed 5°.
6.4.4 Checking the operating and resetting values of the under voltage functions

Apply three voltages with the rated value and gradually decrease the voltages until the relay picks up, i.e. at the moment when the LED U< lights up. Read the operating voltage indicated by the voltmeter. The deviation must not exceed 1% of the set operating value. Furthermore, gradually increase the voltages until the relay resets, i.e. the LED U< is extinguished (not confused with the dim flashing LED, which means the storage of the last disturbance). Check that the resetting voltage is less than 1.03 times the operating voltage.

6.4.5 Checking the relay operating time of the under voltage function

To check the under voltage operating time, a timer must be connected to the under voltage trip output relay contact (terminals D6/E6). The timer should be started simultaneously with the voltage change from sound condition to a faulty condition and stopped by the trip relay contact. The operating time measured by timer should have a deviation <3% of the set value or < 20 ms.

6.4.6 Checking the under impedance characteristics

For testing the under impedance characteristics of MRQ1 relay, three relay characteristically quantities are substantial: input voltages, input current and phase angle between them. During the testing, two of these three characteristically quantities can be set to constant values, and the other can be changed gradually as to move the measured impedance from non-tripping zone into the tripping zone.

Usually it is convenient to set the input voltage and the phase angle between the voltage and current to be given values, and to test the operating characteristics by means of changing the current amplitude. By selecting different phase angles, and changing the current amplitude in the same manner, you can find out operating impedance values of your relay in every direction on the RX-diagram. Fig. 6.2 and 6.3 shows various phase relations between voltage and current, as well as the corresponding impedance trajectories on the RX-plane for your reference.

![Diagram of RX-plane and phase relations between voltage and current](image-url)
6.5 Checking the extern blocking and reset functions

By MRQ1 relays, all relay functions will be inhibited by extern blocking input. To test the blocking function: Apply auxiliary supply voltage to extern blocking input of the relay (terminals E8/D8). Apply a test voltage and inject a test current which could cause a tripping. Observe that there is no trip and no alarm.

Remove the auxiliary supply voltage from the blocking input. Apply a test voltage and inject a test current to make the relay tripped (Message „TRIP“ on the display). Interrupt the test current and apply auxiliary supply voltage to extern reset input of the relay (terminals C8/D8). The display and LED indications should be reset immediately.

6.6 Primary injection test

Generally, a primary injection test could be carried out in the similar manner as the secondary injection test above described, with the difference that the protected power system should be, in this case, connected to the installed relays under test „on line“, and the test currents and voltages should be injected to the relay through the current and voltage transformers with the primary side energized. Since the cost and potential hazards are very high for such a test, especially if staged fault tests are intended, primary injection tests are usually limited to very important protective relays to the power system.

Because of its powerful combined indicating and measuring functions, you have still the possibilities to test the MRQ1 relay in the manner of a primary injection without extra expenditures and time consumption.

In actual service, for example, the measured current and voltage values on the display may be checked phase by phase and compared with the current and voltage indications of the ammeter and voltmeter. It is also possible to check the measured generator impedance value and its real and imaginary parts. Please calculate the power factor of the operating generator, and compare it with the power factor meter indication on the switch-board panel to verify that your relay works and measures correctly and to verify that the relay is connected to the power system with the correct polarity.
6.7 Maintenance

Maintenance testing is generally done on site at regular intervals. These intervals vary among users depending on many factors: e.g. the type of protective relays employed; the importance of the primary equipment being protected; the user’s past experience with the relay, etc.

For electromechanical or static relays, maintenance testing will be performed at least once a year according to the experiences. For digital relays like MRQ1, this interval can be substantially longer.

This is because that:
- the MRQ1 relays are equipped with very wide self-supervision functions, so that many faults in the relay can be detected and signaled during the service. Important: The self-supervision output relay must be connected to a central alarm panel!
- the combined measuring functions in MRQ1 relay enable supervision the relay functions during service.
- the combined TRIP test function of the MRQ1 relay allows to test the relay output circuits by power system interrupt.

A testing interval of two years for maintenance will, therefore, be recommended. During a maintenance testing, the relay functions including the operating values and relay tripping characteristics as well as the operating time should be tested.
7. Technical data

7.1 Measuring inputs

Nominal data

Nominal voltage U_N: 100 V; 230 V; 400 V
Rated current I_N: 1 A; 5 A
Measuring range: $10 \times I_N$
Frequency f_N: 40 - 70 Hz
Burden of the current input:
 at $I_N = 1$ A 0.2 VA
 at $I_N = 5$ A 0.1 VA
Burden of the voltage inputs: <1 VA/per phase at U_N
Thermal capacity of the voltage inputs: $1.2 \times U_N$ continuously
Current inputs withstand:
 dynamic $250 \times I_N$ (one half wave)
 for 1 s $100 \times I_N$
 for 10s $30 \times I_N$
 continuously $4 \times I_N$

7.2 Common data

Dropout to pickup ratio U_\leq, Z_\leq: <102 %
Returning time ≤ 30 ms
Minimum operating time ≤ 60 ms

Influencing quantities:
Frequency 45Hz to 65Hz: no influence
Auxiliary voltage: no influence in the specified range
7.3 Setting ranges and steps

Setting and displaying of voltage is made in Volts.
Setting and displaying of current is related to the nominal current I_N of the MRQ1.
Setting and displaying of the impedance values are related to the nominal values of MRQ1 (pl. ref. to 4.3)

$$Z(\%) = \frac{U_{L1-L3}}{U_N} \cdot \frac{I_N}{I_{L1}} \cdot 100(\%)$$

$$Z(\%) = Z_{sek} \frac{\sqrt{3}I_N}{U_N} \cdot 100(\%)$$

$$Z(\%) = \frac{Z_{sek}}{Z_N} \cdot 100\%$$

<table>
<thead>
<tr>
<th>Element</th>
<th>Parameter</th>
<th>Setting range / steps</th>
<th>Assigned Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>U<</td>
<td>U<</td>
<td>EXIT; 2...110 V / 1V (U_N = 100V)</td>
<td>± 1 % of set value or < 0.3V whichever is larger</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXIT; 5...255 V / 1V (U_N = 230V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXIT; 10...440 V / 2V (U_N = 400V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tU<</td>
<td>0.04...50s; EXIT / 0.01; 0.02; 0.05; 0.1; 0.2; 0.5; 1.0; 2.0 s (EXIT: t = ∞)</td>
<td>± 1 % or ± 20 ms whichever is larger</td>
</tr>
<tr>
<td>Z1</td>
<td>Z1A</td>
<td>-300 ... 300 % of Z_N / 1%</td>
<td>± 5 % of set value at nominal values</td>
</tr>
<tr>
<td></td>
<td>Z1B</td>
<td>0 ... 600 % of Z_N / 1% (Z1B = 0 blocks the function)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tZ1</td>
<td>0.04...50 s; EXIT / 0.01; 0.02; 0.05; 0.1; 0.2; 0.5s (EXIT: t = ∞)</td>
<td>± 1 % or ± 20 ms whichever is larger</td>
</tr>
<tr>
<td>Z2</td>
<td>Z2A</td>
<td>-300 ... 300 % of Z_N / 1%</td>
<td>± 5 % of set value at nominal values</td>
</tr>
<tr>
<td></td>
<td>Z2B</td>
<td>0 ... 600 % of Z_N / 1% (Z2B = 0 blocks the function)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tZ2</td>
<td>0.04...50 s; EXIT / 0.01; 0.02; 0.05; 0.1; 0.2; 0.5s (EXIT: t = ∞)</td>
<td>± 1 % or ± 20 ms whichever is larger</td>
</tr>
</tbody>
</table>

7.4 Common data for all MR relays

Please refer to manual „MR - Digital Multifunctional Relays“
8. Order form

<table>
<thead>
<tr>
<th>Field failure relay</th>
<th>MRQ1-</th>
<th>I</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated current</td>
<td>1 A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 A</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Rated voltage:</td>
<td>100 V</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>230 V</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>400 V</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Housing (12TE)</td>
<td>19"-rack</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Flush mounting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical data subject to change without notice!
Setting list MRQ1

Project: __________________________ Woodward job.-no.: ________________
Function group: = __________ Location: + __________ Relay code: - ________________
Relay functions: __________________________ Password: __________________________
Date: __________________________

<table>
<thead>
<tr>
<th>Function</th>
<th>Unit</th>
<th>Default settings</th>
<th>Actual settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>U<</td>
<td>V</td>
<td>80/190/320*</td>
<td></td>
</tr>
<tr>
<td>tU<</td>
<td>s</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Z1A</td>
<td>%</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Z1B</td>
<td>%</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>tZ1</td>
<td>s</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Z2A</td>
<td>%</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>Z2B</td>
<td>%</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>tZ1</td>
<td>s</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Thresholds dependent on rated voltage 100 V / 230 V / 400 V
Woodward Kempen GmbH
Krefelder Weg 47 · D – 47906 Kempen (Germany)
Postfach 10 07 55 (P.O.Box) · D – 47884 Kempen (Germany)
Phone: +49 (0) 21 52 145 1

Internet
www.woodward.com

Sales
Phone: +49 (0) 21 52 145 216 or 342 · Telefax: +49 (0) 21 52 145 354
e-mail: salesEMEA_PGD@woodward.com

Service
Phone: +49 (0) 21 52 145 614 · Telefax: +49 (0) 21 52 145 455
e-mail: SupportEMEA_PGD@woodward.com