Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, no responsibility is assumed by Woodward unless otherwise expressly undertaken.

© Woodward 1994-2018
Contents

1. Introduction and application ... 4
2. Design .. 5
3. Working principle ... 6
 3.1 Principle of negative sequence protection 6
 3.2 Measurement principle ... 7
4. Operation and settings .. 10
 4.1 Setting of DIP-switches ... 11
 4.2 Setting of the tripping values ... 12
 4.3 Communication via serial interface adapter XRS1 13
5. Relay case and technical data .. 14
 5.1 Relay case .. 14
 5.2 Technical data ... 15
 5.3 Tripping characteristic ... 17
1. Introduction and Application

The XS2 relay is a negative sequence protection relay with universal application. It serves for negative sequence protection of three-phase generators. With a large number of different tripping characteristics and adjustment possibilities, the tripping characteristic can be made suitable for almost every type of generator with regard to its special thermal time-constant.

There is a choice between an independent and an inverse time tripping characteristic. In case of low un-balanced-load, a warning is given after an adjustable time-delay. In case of inadmissible high unbalanced-load, the XS2 relay trips in accordance with the set characteristic.

When compared to the conventional protection equipment all relays of the PROFESSIONAL LINE reflect the superiority of digital protection techniques with the following features:

- High measuring accuracy by digital data processing
- Fault indication via LEDs
- Extremely wide operating ranges of the supply voltage by universal wide-range power supply
- Very fine graded wide setting ranges
- Data exchange with process management system by serial interface adapter XRS1 which can be retrofitted
- Extremely short response time
- Compact design by SMD-technology

In addition to this relay XS2 has the following special features:

- Adjustable protective functions can be selected i.e.
 - definite time overcurrent protection
 - inverse time overcurrent protection
- Consideration of the thermal generator time constant
- Two steps each for warning and tripping, independently adjustable
2. Design

Analog inputs
The phase currents are connected to the protection device via separate c.t.s to the terminals 1S1 - 3S2.

Auxiliary voltage supply
Unit XS2 needs a separate auxiliary voltage supply. Therefore a DC or AC voltage must be used. Unit XS2 has an integrated wide range power supply. Voltages in the range from 19 - 390 V DC or 36 - 275 V AC can be applied at connection terminals A1 and A2.

Contact positions

![Contact positions diagram](image)

- **Operation without fault or unit dead**
- **Negative sequence warning (I2w> exceeded)**
- **Negative sequence tripping (I2s> and I2w exceeded)**

Figure 2.1: Connections

Figure 2.2: Contact positions of the output relays
3. Working Principle

The secondary currents of the main current transformers of the protected object are converted to voltage signals in proportion to the currents via the burdened input transformers. The noise signals caused by inductive and capacitive coupling are suppressed by an analog R-C filter circuit.

The analog voltage signals are fed to the A/D-converter of the microprocessor and transformed to digital signals through Sample- and Hold- circuits. The analog signals are sampled at fn = 50 Hz (60 Hz) with a sampling frequency of 600 Hz (720 Hz), namely, a sampling rate of 1.66 ms (1.38 ms) for every measuring quantity.

The essential part of the XS2 relay is a powerful microcontroller. All of the operations, from the analog digital conversion to the relay trip decision, are carried out by the microcontroller digitally.

The calculated actual negative sequence current values are compared with the relay settings. If a negative sequence current exceeds the pickup value, an alarm is given and after the set trip delay has elapsed, the corresponding trip relay is activated.

The microprocessor is supervised through a built-in "watchdog" timer.

3.1 Principle of Negative Sequence Protection

An unbalanced-load can be caused due to unequal distribution of current in the grid on account of unequal loading, unsymmetrical line-to-line short-circuits (one phase and two phase), line interruption and also switching operations.

Through the unbalanced-load, negative sequence currents occur in the stator, which cause higher harmonics with odd numbers in the stator winding and higher harmonics with even numbers in the rotor winding. The rotor is particularly endangered in this because the higher harmonics put extra load on the rotor winding and induce eddy currents in massive iron content of the rotor which can even lead to melting of the metal or to the destruction of the metal structure.

An unbalanced-load is, however, permissible in certain limits and with regard to the thermal loading limit of the generator. In order to avoid a premature outage of the generator in case of unbalanced-load, the tripping characteristic of the negative sequence protection should be adapted to the thermal characteristic of the generator.

Basically it is established that the better the cooling of the rotor, the lower are generally the permissible negative sequence values. This is due to the fact that with better rotor-cooling the maximum permissible symmetrical load can be chosen higher, however in relation to that, an unbalanced-load is permissible to a lesser extent. For turbo-generators the value of the permissible unbalanced-load is relatively low. Usual values are approx. 10 - 15 % of the load which is permissible with symmetrical load.

The negative sequence relay XS2 has a large number of adjustable tripping characteristics. Protection of almost every type of generator is thereby possible.

In case of unsymmetrical short-circuits in the grid the negative sequence protection relay normally also picks up. In order to ensure selectivity, to the extent the over-load carrying capacity of the generator permits it, a tripping time longer than that of the mains protection (e.g. overload protection) is to be selected.
3.2 Measurement Principle

A rotating three-phase system can be split according to the method of "Symmetrical Components" into a positive-sequence system, a negative-sequence system and a zero-sequence system. The current in the negative-sequence system is a measure for the magnitude of the unbalanced-load. The XS2 relay produces a negative-sequence system by rotating the current-vector IL2 by 240° and the current-vector IL3 by 120°.

![Diagram of three-phase system with symmetrical load](image1)

Three-phase system with symmetrical load

![Diagram of rotation of current vectors for calculation of the negative sequence system](image2)

Rotation of the current vectors for calculation of the negative sequence system

![Diagram of addition of the rotated current vectors](image3)

Addition of the rotated current vectors

Figure 3.1

A rotating field is produced with opposite direction. If the currents of this negative-sequence system are added, the sum is zero in case of a symmetrically load.

![Diagram of three-phase system with unbalanced load](image4)

Three-phase system with unbalanced load

![Diagram of rotation of current vectors for calculation of the negative sequence system](image5)

Rotation of the current vectors for calculation of the negative sequence system

![Diagram of addition of the rotated current vectors](image6)

Addition of the rotated current vectors

Figure 3.2:

Figure 3.2 shows the current vectors of an unsymmetrically loaded generator. The XS2 relay forms the negative-sequence system by rotation and adding of the current vectors. Tripping takes place according to the adjusted tripping-characteristic. For exact rotation of the current vectors by 120° or 240°, the accurate setting of the system frequency is necessary.

Definition of the inverse current (I2)

The inverse current (negative sequence current) is the resultant current in the negative-sequence system after splitting an unsymmetrical system in three symmetrical components. Example: In case of a three-phase generator which is loaded with rated current in only one phase, there is an inverse current of $I_2 = 1/3 \times I_N$.
Adaptation to the generator
For matching the XS2 relay to the respective generator-type, two important generator parameters are required from the generator manufacturer:

a) The continuously permissible negative sequence related to the rated current \(I_N \) of the generator.

\[K_2 = \frac{I_{2S}}{I_N} \]

This is usually given in \% where \(I_{2S} \) is the continuously permissible negative sequence current.

b) The generator-constant which is dependent on design

\[K_1 = K_2^2 \times T_{INV} \]

For generator with air-cooling, following values are common:

<table>
<thead>
<tr>
<th>Generator capacity</th>
<th><100 MVA</th>
<th><20 MVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuously permissible unbalanced-load (K_2)</td>
<td>approx. 8...10 % (x) (I_N)</td>
<td>approx. 20 % (x) (I_N)</td>
</tr>
<tr>
<td>Generator constant (K_1)</td>
<td>5...30</td>
<td>...60</td>
</tr>
</tbody>
</table>

Further values can be taken from DIN 57 530 part 1 / IEC VDE 0530 part 1.

The maximum permissible time \(t_{perm} \) of the negative sequence current \(I_2 \) is given by:

\[t_{perm} = \frac{T_{INV}}{(I_2/I_{2S})^2 - 1}; \text{where } T_{INV} = K_1/K_2^2 \]

The following table shows current unbalances at different asymmetry occurrences and gives information on test results at different cases of asymmetry, based on a 3-phase power source with adjustable phase angle of the currents.

<table>
<thead>
<tr>
<th>(I_{L1}) (x (I_N))</th>
<th>(\text{Angle (°)})</th>
<th>(I_{L2}) (x (I_N))</th>
<th>(\text{Angle (°)})</th>
<th>(I_{L3}) (x (I_N))</th>
<th>(\text{Angle (°)})</th>
<th>(I_2) (x (I_N))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0.33</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>1.00</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0.33</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>1.00</td>
<td>-</td>
<td>0.33</td>
</tr>
<tr>
<td>1.00</td>
<td>0</td>
<td>1.00</td>
<td>240</td>
<td>1.00</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>1.00</td>
<td>0</td>
<td>1.00</td>
<td>120</td>
<td>1.00</td>
<td>240</td>
<td>1.00</td>
</tr>
<tr>
<td>1.00</td>
<td>0</td>
<td>1.00</td>
<td>180</td>
<td>0.00</td>
<td>-</td>
<td>0.578</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>1.00</td>
<td>0</td>
<td>1.00</td>
<td>120</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Figure 3.3: Negative sequence currents at different asymmetry examples
Example of setting

The following parameters may be given:
Nominal current of generator: 800 A
Current-transformer ratio: 1000/5
Continuously permissible
Unbalanced-load K2: 12.5 %
Thermal generator constant K1: \(K_2^2 \times t = 8 \) s

At first the calculation is done for the generator nominal current related to the secondary side of current transformer:

\[I_{\text{Nsec}} = \frac{800 \ A \times 5}{1000} = 4 \ A \]

The continuously permissible negative sequence current related to the secondary side of the current transformer amounts to:

\[I_{2S\text{sec}} = K_2 \times I_{\text{Nsec}} \]

\[K_2 = 12.5 \% \]

\[I_{2S\text{sec}} = 0.125 \times 4 \ A = 0.5 \ A \]

The pickup value \(I_{2S} \) of the negative sequence currents (related to \(I_N = 5A \)) can be calculated to:

\[I_{2S} = 0.5 \ A / 5 \ A = 0.1 \ (10\%) \]

The time-constant \(T \) for the selection of the tripping characteristic can be calculated as follows:

\[K_1 = 8 \ s \quad K_2 = 12.5 \% \quad T = \frac{K_1}{K_2^2} = \frac{8 \ s}{0.125^2} = 512 \ s = 500 \ s \]

For the warning stage \(I_{2W} \), a somewhat lower value than \(I_{2S} \) (e.g. 10 %) is used. The setting value \(I_{2W} \) then works out as follows:

\[I_{2W} = 10 \% \times I_N / \text{Current-transformer ratio} / I_{\text{Nsec}} \]

\[I_{2W} = \frac{0.1 \times 800 \ A}{\frac{1000}{5} \times 4 \ A} = 0.064 \ (6.4\%) \]

It is recommended that the time-delay \(t_w \) for the negative sequence warning has to be adjusted to about 5 s.
4. Operation and Settings

All operating elements needed for setting parameters are located on the front plate of the XS2 as well as all display elements. Because of this all adjustments of the unit can be made or changed without disconnecting the unit off the DIN-rail.

For adjustment of the unit the transparent cover has to be opened as illustrated. Do not use force! The transparent cover has two inserts for labels.
LEDs
LED "ON" is used for display of the readiness for service (at applied auxiliary voltage Uv). LEDs I2s> and I2w> signal pickup (flashing) or tripping (steady light) of the corresponding function.

Test push button
This push button is used for test tripping of the unit and when pressed for 5 s a check-up of the hardware takes place. Both output relays are tripped and all tripping LEDs light up.

4.1 Setting of DIP-Switches

The DIP-switch block on the front plate of the XS2 is used for adjustment of the nominal values and setting of function parameters:

<table>
<thead>
<tr>
<th>DIP-switch</th>
<th>OFF</th>
<th>ON</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEFT</td>
<td>TINV</td>
<td>Switch over for inverse time / definite time tripping (I2s>)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x1</td>
<td>x10</td>
<td>Time multiplier for DEFT-characteristic (I2s>)</td>
</tr>
<tr>
<td>4</td>
<td>x10</td>
<td>x100</td>
<td>Time multiplier for INV-characteristic (I2s>)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>50 Hz</td>
<td>60 Hz</td>
<td>Rated frequency</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1: Functions of DIP-switches

Tripping characteristic
The tripping characteristic requested for the current unbalance protection can be adjusted by using DIP-switch 1:
DIP switch 1 OFF = definite time characteristic (DEFT) selected for I2s>
DIP switch 1 ON= inverse time characteristic (INV) selected for I2s>

Rated frequency
With the aid of DIP-switch 6 the rated frequency can be set to 50 or 60 Hz, depending upon the given mains characteristics.
4.2 Setting the Tripping Values

The PROFESSIONAL LINE units have the unique possibility of high accuracy fine adjustments. For this, two potentiometers are used. The coarse setting potentiometer can be set in discrete steps of 10 % steps. A second fine adjustment potentiometer is then used for continuously variable setting of the final 0 - 10 %. Adding of the two values results in the precise tripping value.

Negative sequence current element I2s>
The tripping value I2s> can be set in the range from 3 - 60 % In with the aid of the potentiometer illustrated on the following diagram.

Example:
A tripping value of 36 % In is to be set. The set value of the right potentiometer is just added to the value of the coarse setting potentiometer. (The arrow of the coarse setting potentiometer must be inside of the marked bar, otherwise no defined setting value).

![Figure 4.3: Adjustment example](image)

Negative sequence current warning
The negative sequence current element I2w> can be adjusted continuously variable in the range from 3 - 50 % In.

Time delay (DEFT) or (INV)
The time delay for current unbalance tripping I2s> (DIP switch 1 OFF = DEFT) can be adjusted continuously variable in the range from 0 - 30 s or 0 - 300 s. For the inverse time characteristic (DIP-switch 1 ON=INV), the value of the generator time constant is adjustable in the range from 100 - 300s or 100 - 3000s.

Time delay tw
The time delay tw for warning of current unbalance I2w> can be adjusted in the range 0 - 25s or 0 - 250s. The tripping characteristic is always definite time.
4.3 Communication via Serial Interface Adapter XRS1

For communication of the units among each other and with a superior management system, the interface adapter XRS1 is available for data transmission, including operating software for our relays. This adapter can easily be retrofitted at the side of relay. Screw terminals simplify its installation. Optical transmission of this adapter makes galvanic isolation of the relay possible. Aided by the software, actual measured values can be processed, relay parameters set and protection functions programmed at the output relays. Information about unit XRS1 in detail can be taken from the description of this unit.
5. Relay Case and Technical Data

5.1 Relay Case

Relay XS2 is designed to be fastened onto a DIN-rail acc. to DIN EN 50022, the same as all units of the PRO-FESSIONAL LINE. The front plate of the relay is protected with a sealable transparent cover (IP40).

![Dimensional drawing](image)

Figure 5.1: Dimensional drawing

Connection terminals
The connection of up to a maximum 2 x 2.5 mm² cross-section conductors is possible. For this the transparent cover of the unit has to be removed (see para. 4).
5.2 Technical Data

Measuring input circuits
Rated frequency fn: 50/60 Hz
Thermal withstand capability in current circuits:
dynamic current withstand (half wave) 250 x In
for 1 s 100 x In
for 10 s 30 x In
continuously 4 x In
Power consumption at In = 1 A 0.1 VA
in current circuit In = 5 A 0.1 VA

Auxiliary voltage
Rated auxiliary voltage Uv/
Power consumption: 19 - 390 V DC or 36 - 275 V AC / 4 W
(terminals A1 and A2)
Maximum permissible auxiliary voltage discontinuance tu
Uv = 24 V DC: tu = 8 ms, Uv = 48 VDC: tu = 35 ms
Uv > 60 V DC: tu = 50 ms

Common data
Dropout to pickup ratio: < 97 %
Resetting time from pickup: < 50 ms
Returning time from trip: 200 ms
Minimum initialization time after supply voltage has applied: 120 ms
Minimum response time when supply voltage is available: 70 ms

Output relay
Number of relays: 2
Contacts: 1 changeover contact for each trip relay
Maximum breaking capacity:
Max. rated voltage: 220 V DC
ohmic load Imax. = 0.2 A
inductive load Imax. = 0.1 A at L/R ≤ 50 ms
24 V DC
inductive load Imax. = 5 A
Minimum load: 1 W / 1 VA at Umin ≥ 10 V
Maximum rated voltage: 250 V AC/125 V DC
Maximum rated current: 5 A
Making current (16ms): 20 A
Contact life span: 10⁵ operations at max. breaking capacity
Contact material: AgCdO

System data
Design standard: VDE 0435 T303; IEC 0801 part 1-4;
VDE 0160; IEC 255-4; BS142; VDE 0871
Temperature range at storage and operation: -25°C to + 70°C
Constant climate class F acc. DIN 40040 and DIN IEC 68, part 2-3: more than 56 days at 40°C and 95% relative humidity

High voltage test acc. to VDE 0435, part 303
Voltage test: 2.5 kV (eff.) / 50 Hz: 1 min
Surge voltage test: 5 kV; 1.2/50 µs, 0.5 J
High frequency test: 2.5 kV / 1 MHz
Electrostatic discharge (ESD) acc. to IEC 0801, part 2: 8 kV

Radiated electromagnetic field test acc. to IEC 0801, part 3: 10 V/m

Electrical fast transient (burst) acc. to IEC 0801, part 4: 4 kV / 2.5kHz, 15 ms

Radio interference suppression test as per DIN 57871 and VDE 0871: limit value class AB

Repeat accuracy: 1 %
Basic time delay accuracy: 0.5 % or ±25 ms
Basic accuracy of current: 2 % of In

Accuracy of time delay: 3 % DEFT / 7.5 % INV / or ±30 ms

Transient overreach at instantaneous operation: ≤ 5 %
Temperature effect: 0.02 % per K
Frequency effect: 3 % per K deviation from rated value

Mechanical test:
Shock: class 1 acc. to DIN IEC 255-21-2
Vibration: class 1 acc. to DIN IEC 255-21-1

Degree of protection
Front plate: IP40 at closed front cover
Weight: approx. 0.5 kg
Mounting position: any
Relay case material: self-extinguishing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting range</th>
<th>Graduation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2s></td>
<td>3 - 60 % In</td>
<td>Continuously variable</td>
</tr>
<tr>
<td>I2w></td>
<td>3 - 50 % In</td>
<td>Continuously variable</td>
</tr>
<tr>
<td>DEFT / INV</td>
<td>0 - 30 s / 0 - 300 s / 100 - 3000 s</td>
<td>Continuously variable</td>
</tr>
<tr>
<td>tw</td>
<td>0 - 25 s / 0 - 250 s</td>
<td>Continuously variable</td>
</tr>
</tbody>
</table>

Table 5.1: Setting ranges and graduation

Technical data subject to change without notice!
5.3 Tripping characteristic

Figure 5.2: Tripping characteristic
Setting list XS2

Project: ______________________ Woodward job-no.: _____________

Function group: = __________ Location: + ___ Relay code: - __________

Relay functions: ______________________ Date: ____________________

Setting of parameters

<table>
<thead>
<tr>
<th>Function</th>
<th>Unit</th>
<th>Default settings</th>
<th>Actual settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2s></td>
<td>Negative sequence tripping</td>
<td>% In</td>
<td>0</td>
</tr>
<tr>
<td>I2W></td>
<td>Negative sequence warning</td>
<td>% In</td>
<td>3</td>
</tr>
<tr>
<td>t DEFT/INV</td>
<td>Tripping delay</td>
<td>s</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIP-switch</th>
<th>Function</th>
<th>Default settings</th>
<th>Actual settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Switch over for inverse time / definite time tripping (I2s>)</td>
<td>DEFT</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Time multiplier for DEFT-characteristic (I2s>)</td>
<td>x1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Time multiplier for INV-characteristic (I2s>)</td>
<td>x10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Time multiplier for tw (I2w>)</td>
<td>x1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rated frequency</td>
<td>50 Hz</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>